HAND DUG WELLS ON THE KARAMOJA-TESO BORDER NE UGANDA

BGS Meeting 25th September 2001

By: Brian Darling of CED

Together with Brian Hardcastle and John Holloway of CED

Kara - Teso Water Project

Undertaken:

- in partnership with CHIPS
- with funding from ODA (now DiFD) and other sources
- as part of wider development programme

Included:

- Hand dug well programme
- Rehabilitation of 2 earth valley dams
- Spring protection and gravity pipeline scheme

CHIPS/CED water projects secondary aim to facilitate peacemaking

View of Kara-Teso Project Area

Development Philosophy

- Community ownership
- Sustainability maintenance of source
- Replicable construction method
- Maximise other development spin-offs

Traditional waterhole

U2 handpump concrete manhole cover apron concrete cover stab curved concrete blocks clay seal with joints sealed murram curved concrete blocks with open joints water table - gravel pack pump cylinder foundation on firm ground or rock **Fully Protected Well** With Handpump

Hand-dug well typical section

The Regolith Profiles for Wells in the Karamoja-Teso Area

Topsoil

0.3 – 5.1m. [Sandy clay, brown for the first 0.3 – 0.5m, then Orange brown, with a layer of gravel below.]

Murrum.

0.3 – 4.0m. [A basal ferruginous laterite concretion.]

Saprolite

0.2 – 7.0m [Clay often containing silt. Often with sand towards the bottom. Prone to collapse]

Initial well digging

Well shoring system

Windlass used for lowering men and equipment

Well lining using concrete blocks

Well head construction

Hand auger rig

Well opening celebrations

Causes of Delay

- Waning initial enthusiasm
- Crop planting, harvesting, and cattle migration
- Community occasions such as weddings and funerals
- Delays in supplies promised by other agencies
- Breakdowns of the lightweight submersible pumps
- Disruption by floods and famine
- Transport problems breakdowns and impassable roads

Revised Community Agreement

Community agree to:

- Elect an well committee (including 2 women)
- Raise 150,000UShs (£100) to pay their own workers
- House and feed CHIPS well technicians
- Safeguard the site

NGO agree to:

- Administer funds, provide equipment and technicians
- Provide ox cart on loan for collecting sand & murram
- Once complete to hand over to WATSAN maintenance programme
- Provide health and hygiene advice also provide pit latrine cover slabs (through WATSAN)

Petrol driven jack hammer

MSc Research Hydrogeological Survey and Resistivity Surveying

Resistivity survey results

Ocito Pseudosection

Project Evaluation

Number of wells started	62
Number abandoned	9
Number sunk	53
Number dry	15
Number successfully completed	38
Success rate	71%

Well Performance

Yield range 25 to 4500 l/hr Average yield 425 l/hr

Increase in water use:

- prior to well construction 4 to 10 l/day/head

- post to well construction 15 to 26 l/day/head

No. of people supplied from

the 38 new wells: 6000

Water Quality

Thermotolerant (faecal) Coliform counts (TFC/100ml)

	Range	Typically value
Boreholes	0 – 22	zero
Wells	0 – 590	20
Surface sources	40 – 2000+	1000+

Boreholes would be classified as of "low risk" Wells would be classified as of "Intermediate to high risk" [Lloyd.B. & Helmer.R.1991]

The average for the wells falls within the range, 8 – 200 TFC/100ml quoted as typical for Uganda [Cairncross and Feacham]

Water Storage in Pots

Possible Causes of contamination:

- Ill fitting cover on pots giving access to insects
- Cup for scooping water out used by whole family and often left on the floor
- Multi-use of same jerrycan for different water sources
- Using cupped hands to funnel pumped well water into jerrycans.
- Sanitary surveys carried out at wells indicated that contamination could occur from dirty well sites

Conclusions - hand dug well programme

- Hand dug well programme cost £100,000
- Provided water for 6,000 people
- A reasonable quality water provided
- Water consumption increased
- Time spent collecting water much reduced - giving more time for work in fields or education
- Reduced incidence of disease

Conclusions - other benefits

- Communities strengthened and able to tackle other development projects
- Women's participation encouraged
- 3 well teams continuing with other NGOs
- Helped progress reconciliation between Iteso and Karamojong
- 4 MSc students contributed valuable reasearch

